Saturday, January 29, 2011

Summary

This article has covered the basics of database design in the context of Microsoft Access. The main concepts covered were:
  • The relational database model was created by E.F. Codd in 1969 and is founded on set theory and logic.
  • A database designed according to the relational model will be efficient, predictable, well performing, self-documenting and easy to modify.
  • Every table must have a primary key, which uniquely identifies rows in the table.
  • Foreign keys are columns used to reference a primary key in another table.
  • You can establish three kinds of relationships between tables in a relational database: one-to-one, one-to-many or many-to-many. Many-to-many relationships require a linking table.
  • Normalization is the process of simplifying the design of a database so that it achieves the optimum structure.
  • A well-designed database follows the Normal Forms.
  • The entity integrity rule forbids nulls in primary key columns.
  • The referential integrity rule says that the database must not contain any unmatched foreign key values.
  • Business rules are an important part of database integrity.
  • A well-designed database requires business insight, time, and experience.
  • Occasionally, you made need to denormalize for performance.
Database design is an important component of application design. If you take the time to design your databases properly, you'll be rewarded with a solid application foundation on which you can build the rest of your application.

Breaking the Rules: When to Denormalize

Sometimes it's necessary to break the rules of normalization and create a database that is deliberately less normal than it otherwise could be. You'll usually do this for performance reasons or because the users of the database demand it. While this won't get you any points with database design purists, ultimately you have to deliver a solution that satisfies your users. If you do break the rules, however, and decide to denormalize you database, it's important that you follow these guidelines:
  • Break the rules deliberately; have a good reason for denormalizing.
  • Be fully aware of the tradeoffs this decision entails.
  • Thoroughly document this decision.
  • Create the necessary application adjustments to avoid anomalies.
This last point is worth elaborating on. In most cases, when you denormalize, you will be required to create additional application code to avoid insertion, update, and deletion anomalies that a more normalized design would avoid. For example, if you decide to store a calculation in a table, you'll need to create extra event procedure code and attach it to the appropriate event properties of forms that are used to update the data on which the calculation is based.
If you're considering denormalizing for performance reasons, don't always assume that the denormalized approach is the best. Instead, I suggest you first fully normalize the database (to Third Normal Form or higher) and then denormalize only if it becomes necessary for reasons of performance.
If you're considering denormalizing because your users think they need it, investigate why. Often they will be concerned about simplifying data entry, which you can usually accomplish by basing forms on queries while keeping your base tables fully normalized.
Here are several scenarios where you might choose to break the rules of normalization:
  • You decide to store an indexed computed column, Soundex, in tblCustomer to improve query performance, in violation of 3NF (because Soundex is dependent on LastName). The Soundex column contains the sound-alike code for the LastName column. It's an indexed column (with duplicates allowed) and is calculated using a user-defined function. If you wish to perform searches on the Soundex column with any but the smallest tables, you'll find a significant performance advantage to storing the Soundex column in the table and indexing this computed column. You'd likely use an event procedure attached to a form to perform the Soundex calculation and store the result in the Soundex column. To avoid update anomalies, you'll want to ensure that this column cannot be updated by the user and that it is updated every time LastName changes.
  • In order to improve report performance, you decide to create a column named TotalOrderCost that contains a sum of the cost of each order item in tblOrder. This violates 2NF because TotalOrderCost is dependent on the primary key of tblOrderDetail, not on tblOrder's primary key. TotalOrderCost is calculated on a form by summing the column TotalCost for each item. Since you often create reports that need to include the total order cost, but not the cost of individual items, you've broken 2NF to avoid having to join these two tables every time this report needs to be generated. As in the last example, you have to be careful to avoid update anomalies. Whenever a record in tblOrderDetail is inserted, updated, or deleted, you will need to update tblOrder, or the information stored there will be erroneous.
  • You decide to include a column, SalesPerson, in the tblInvoice table, even though SalesId is also included in tblInvoice. This violates 3NF because the two non-key columns are mutually dependent, but it significantly improves the performance of certain commonly run reports. Once again, this is done to avoid a join to the tblEmployee table, but introduces redundancies and adds the risk of update anomalies.

A Practical Approach to Database Design

As mentioned earlier in this article, database design is more art than science. While it's true that a properly designed database should follow the normal forms and the relational model, you still have to come up with a design that reflects the business you are trying to model. Relational database design theory can usually tell you what not to do, but it won't tell you where to start or how to manage your business. This is where it helps to understand the business (or other scenario) you are trying to model. A well-designed database requires business insight, time, and experience. Above all, it shouldn't be rushed.
To assist you in the creation of databases, I've outlined the following 20-step approach to sound database design:
  1. Take some time to learn the business (or other system) you are trying to model. This will usually involve sitting down and meeting with the people who will be using the system and asking them lots of questions.
  2. On paper, write out a basic mission statement for the system. For example, you might write something like "This system will be used to take orders from customers and track orders for accounting and inventory purposes." In addition, list out the requirements of the system. These requirements will guide you in creating the database schema and business rules. For example, create a list that includes entries such as "Must be able to track customer address for subsequent direct mail."
  3. Start to rough out (on paper) the data entry forms. (If rules come to mind as you lay out the tables, add them to the list of requirements outlined in step 2.) The specific approach you take will be guided by the state of any existing system.
    • If this system was never before computerized, take the existing paper-based system and rough out the table design based on these forms. It's very likely that these forms will be non-normalized.
    • If the database will be converted from an existing computerized system, use its tables as a starting point. Remember, however, that it's very likely that the existing schema will be non-normalized. It's much easier to normalize the database now rather than later. Print out the existing schema, table by table, and the existing data entry forms to use in the design process.
    • If you are really starting from scratch (e.g., for a brand new business), then rough out on paper what forms you envision filling out.
  4. Based on the forms, you created in step 3, rough out your tables on paper. If normalization doesn't come naturally (or from experience), you can start by creating one huge, non-normalized table per form that you will later normalize. If you're comfortable with normalization theory, try and keep it in mind as you create your tables, remembering that each table should describe a single entity.
  5. Look at your existing paper or computerized reports. (If you're starting from scratch, rough out the types of reports you'd like to see on paper.) For existing systems that aren't currently meeting the user needs, it's likely that key reports are missing. Create them now on paper.
  6. Take the roughed-out reports from step 5 and make sure that the tables from step 4 include this data. If information is not being collected, add it to the existing tables or create new ones.
  7. On paper, add several rows to each roughed-out table. Use real data if at all possible.
  8. Start the normalization process. First, identify candidate keys for every table and using the candidates, choose the primary key. Remember to choose a primary key that is minimal, stable, simple, and familiar. Every table must have a primary key! Make sure that the primary key will guard against all present and future duplicate entries.
  9. Note foreign keys, adding them if necessary to related tables. Draw relationships between the tables, noting if they are one-to-one or one-to-many. If they are many-to-many, then create linking tables.
  10. Determine whether the tables are in First Normal Form. Are all fields atomic? Are there any repeating groups? Decompose if necessary to meet 1NF.
  11. Determine whether the tables are in Second Normal Form. Does each table describe a single entity? Are all non-key columns fully dependent on the primary key? Put another way, does the primary key imply all of the other columns in each table? Decompose to meet 2NF. If the table has a composite primary key, then the decomposition should, in general, be guided by breaking the key apart and putting all columns pertaining to each component of the primary key in their own tables.
  12. Determine if the tables are in Third Normal Form. Are there any computed columns? Are there any mutually dependent non-key columns? Remove computed columns. Eliminate mutual dependent columns by breaking out lookup tables.
  13. Using the normalized tables from step 12, refine the relationships between the tables.
  14. Create the tables using Microsoft Access (or whatever database program you are using). If using Microsoft Access, create the relationships between the tables using the Edit | Relationships command. Add sample data to the tables.
  15. Create prototype queries, forms, and reports. While creating these objects, design deficiencies should become obvious. Refine the design as needed.
  16. Bring the users back in. Have them evaluate your forms and reports. Are their needs met? If not, refine the design. Remember to re-normalize if necessary (steps 8-12).
  17. Go back to the table design screen and add business rules.
  18. Create the final forms, reports, and queries. Develop the application. Refine the design as necessary.
  19. Have the users test the system. Refine the design as needed.
  20. Deliver the final system.
This list doesn't cover every facet of the design process, but it's useful as a framework for the process.

Integrity Rules

The relational model defines several integrity rules that, while not part of the definition of the Normal Forms are nonetheless a necessary part of any relational database. There are two types of integrity rules: general and database-specific.

General Integrity Rules

The relational model specifies two general integrity rules. They are referred to as general rules, because they apply to all databases. They are: entity integrity and referential integrity.
The entity integrity rule is very simple. It says that primary keys cannot contain null (missing) data. The reason for this rule should be obvious. You can't uniquely identify or reference a row in a table, if the primary key of that table can be null. It's important to note that this rule applies to both simple and composite keys. For composite keys, none of the individual columns can be null. Fortunately, Microsoft Access automatically enforces the entity integrity rule for you. No component of a primary key in Microsoft Access can be null.
The referential integrity rule says that the database must not contain any unmatched foreign key values. This implies that:
  • A row may not be added to a table with a foreign key unless the referenced value exists in the referenced table.
  • If the value in a table that's referenced by a foreign key is changed (or the entire row is deleted), the rows in the table with the foreign key must not be "orphaned."
In general, there are three options available when a referenced primary key value changes or a row is deleted. The options are:
  • Disallow. The change is completely disallowed.
  • Cascade. For updates, the change is cascaded to all dependent tables. For deletions, the rows in all dependent tables are deleted.
  • Nullify. For deletions, the dependent foreign key values are set to Null.
Microsoft Access allows you to disallow or cascade referential integrity updates and deletions using the Edit | Relationships command (see Figure 13). Nullify is not an option.
Figure 13
Figure 13. Specifying a relationship with referential integrity between the tblCustomer and tblOrder tables using the Edit | Relationships command. Updates of CustomerId in tblCustomer will be cascaded to tblOrder. Deletions of rows in tblCustomer will be disallowed if rows in tblOrders would be orphaned.
Note: When you wish to implement referential integrity in Microsoft Access, you must perform one additional step outside of the Edit | Relationships dialog: in table design, you must set the Required property for the foreign key column to Yes. Otherwise, Microsoft Access will allow your users to enter a Null foreign key value, thus violating strict referential integrity.

Database-Specific Integrity Rules

All integrity constraints that do not fall under entity integrity or referential integrity are termed database-specific rules or business rules. These type of rules are specific to each database and come from the rules of the business being modeled by the database. It is important to note that the enforcement of business rules is as important as the enforcement of the general integrity rules discussed in the previous section.
Note: Rules in Microsoft Access 2.0 are now enforced at the engine level, which means that forms, action queries and table imports can no longer ignore your rules. Because of this change, however, column rules can no longer reference other columns or use domain, aggregate, or user-defined functions.
Without the specification and enforcement of business rules, bad data will get in the database. The old adage, "garbage in, garbage out" applies aptly to the application (or lack of application) of business rules. For example, a pizza delivery business might have the following rules that would need to be modeled in the database:
  • Order date must always be between the date the business started and the current date.
  • Order time and delivery time can be only during business hours.
  • Delivery time must be greater than or equal to Order time.
  • New orders cannot be created for discontinued menu items.
  • Customer zip codes must be within a certain range—the delivery area.
  • The quantity ordered can never be less than 1 or greater than 50.
  • Non-null discounts can never be less than 1 percent or greater than 30 percent.
Microsoft Access 2.0 supports the specification of validation rules for each column in a table. For example, the first business rule from the above list has been specified in Figure 14.
Figure 14
Figure 14. A column validation rule has been created to limit all order dates to some time between the first operating day of the business (5/3/93) and the current date.
Microsoft Access 2.0 also supports the specification of a global rule that applies to the entire table. This is useful for creating rules that cross-reference columns as the example in Figure 15 demonstrates. Unfortunately, you're only allowed to create one global rule per table, which could make for some awful validation error messages (e.g., "You have violated one of the following rules: 1. Delivery Date > Order Date. 2. Delivery Time > Order Time....").
Figure 15
Figure 15. A table validation rule has been created to require that deliveries be made on or after the date the pizza was ordered.
Although Microsoft Access business-rule support is better than most other desktop DBMS programs, it is still limited (especially the limitation of one global table rule), so you will typically build additional business rule logic into applications, usually in the data entry forms. This logic should be layered on top of any table-based rules and can be built into the application using combo boxes, list-boxes and option groups that limit available choices, form-level and field-level validation rules, and event procedures. These application-based rules, however, should be used only when the table-based rules cannot do the job. The more you can build business rules in at the table level, the better, because these rules will always be enforced and will require less maintenance.

Relationships

You define foreign keys in a database to model relationships in the real world. Relationships between real-world entities can be quite complex, involving numerous entities each having multiple relationships with each other. For example, a family has multiple relationships between multiple people—all at the same time. In a relational database such as Microsoft Access, however, you consider only relationships between pairs of tables. These tables can be related in one of three different ways: one-to-one, one-to-many or many-to-many.

One-to-One Relationships

Two tables are related in a one-to-one (1—1) relationship if, for every row in the first table, there is at most one row in the second table. True one-to-one relationships seldom occur in the real world. This type of relationship is often created to get around some limitation of the database management software rather than to model a real-world situation. In Microsoft Access, one-to-one relationships may be necessary in a database when you have to split a table into two or more tables because of security or performance concerns or because of the limit of 255 columns per table. For example, you might keep most patient information in tblPatient, but put especially sensitive information (e.g., patient name, social security number and address) in tblConfidential (see Figure 3). Access to the information in tblConfidential could be more restricted than for tblPatient. As a second example, perhaps you need to transfer only a portion of a large table to some other application on a regular basis. You can split the table into the transferred and the non-transferred pieces, and join them in a one-to-one relationship.
Figure 3
Figure 3. The tables tblPatient and tblConfidential are related in a one-to-one relationship. The primary key of both tables is PatientId.
Tables that are related in a one-to-one relationship should always have the same primary key, which will serve as the join column.

One-to-Many Relationships

Two tables are related in a one-to-many (1—M) relationship if for every row in the first table, there can be zero, one, or many rows in the second table, but for every row in the second table there is exactly one row in the first table. For example, each order for a pizza delivery business can have multiple items. Therefore, tblOrder is related to tblOrderDetails in a one-to-many relationship (see Figure 4). The one-to-many relationship is also referred to as a parent-child or master-detail relationship. One-to-many relationships are the most commonly modeled relationship.
Figure 4
Figure 4. There can be many detail lines for each order in the pizza delivery business, so tblOrder and tblOrderDetails are related in a one-to-many relationship.
One-to-many relationships are also used to link base tables to information stored in lookup tables. For example, tblPatient might have a short one-letter DischargeDiagnosis code, which can be linked to a lookup table, tlkpDiagCode, to get more complete Diagnosis descriptions (stored in DiagnosisName). In this case, tlkpDiagCode is related to tblPatient in a one-to-many relationship (i.e., one row in the lookup table can be used in zero or more rows in the patient table).

Many-to-Many Relationships

Two tables are related in a many-to-many (M—M) relationship when for every row in the first table, there can be many rows in the second table, and for every row in the second table, there can be many rows in the first table. Many-to-many relationships can't be directly modeled in relational database programs, including Microsoft Access. These types of relationships must be broken into multiple one-to-many relationships. For example, a patient may be covered by multiple insurance plans and a given insurance company covers multiple patients. Thus, the tblPatient table in a medical database would be related to the tblInsurer table in a many-to-many relationship. In order to model the relationship between these two tables, you would create a third, linking table, perhaps called tblPtInsurancePgm that would contain a row for each insurance program under which a patient was covered (see Figure 5). Then, the many-to-many relationship between tblPatient and tblInsurer could be broken into two one-to-many relationships (tblPatient would be related to tblPtInsurancePgm and tblInsurer would be related to tblPtInsurancePgm in one-to-many relationships).
Figure 5
Figure 5. A linking table, tblPtInsurancePgm, is used to model the many-to-many relationship between tblPatient and tblInsurer.
In Microsoft Access, you specify relationships using the Edit—Relationships command. In addition, you can create ad-hoc relationships at any point, using queries.

Foreign Keys and Domains

Although primary keys are a function of individual tables, if you created databases that consisted of only independent and unrelated tables, you'd have little need for them. Primary keys become essential, however, when you start to create relationships that join together multiple tables in a database. A foreign key is a column in a table used to reference a primary key in another table.
Continuing the example presented in the last section, let's say that you choose CustomerId as the primary key for tblCustomer. Now define a second table, tblOrder, as shown in Figure 2.
Figure 2
Figure 2. CustomerId is a foreign key in tblOrder which can be used to reference a customer stored in the tblCustomer table.
CustomerId is considered a foreign key in tblOrder since it can be used to refer to given customer (i.e., a row in the tblCustomer table).
It is important that both foreign keys and the primary keys that are used to reference share a common meaning and draw their values from the same domain. Domains are simply pools of values from which columns are drawn. For example, CustomerId is of the domain of valid customer ID #'s, which in this case might be Long Integers ranging between 1 and 50,000. Similarly, a column named Sex might be based on a one-letter domain equaling 'M' or 'F'. Domains can be thought of as user-defined column types whose definition implies certain rules that the columns must follow and certain operations that you can perform on those columns.
Microsoft Access supports domains only partially. For example, Microsoft Access will not let you create a relationship between two tables using columns that do not share the same datatype (e.g., text, number, date/time, etc.). On the other hand, Microsoft Access will not prevent you from joining the Integer column EmployeeAge from one table to the Integer column YearsWorked from a second table, even though these two columns are obviously from different domains.

Relational Database Design

When designing a database, you have to make decisions regarding how best to take some system in the real world and model it in a database. This consists of deciding which tables to create, what columns they will contain, as well as the relationships between the tables. While it would be nice if this process was totally intuitive and obvious, or even better automated, this is simply not the case. A well-designed database takes time and effort to conceive, build and refine.
The benefits of a database that has been designed according to the relational model are numerous. Some of them are:
  • Data entry, updates and deletions will be efficient.
  • Data retrieval, summarization and reporting will also be efficient.
  • Since the database follows a well-formulated model, it behaves predictably.
  • Since much of the information is stored in the database rather than in the application, the database is somewhat self-documenting.
  • Changes to the database schema are easy to make.
The goal of this article is to explain the basic principles behind relational database design and demonstrate how to apply these principles when designing a database using Microsoft Access. This article is by no means comprehensive and certainly not definitive. Many books have been written on database design theory; in fact, many careers have been devoted to its study. Instead, this article is meant as an informal introduction to database design theory for the database developer.
Note: While the examples in this article are centered around Microsoft Access databases, the discussion also applies to database development using the Microsoft Visual Basic® programming system, the Microsoft FoxPro® database management system, and the Microsoft SQL Server™ client-server database management system.

Tables, Uniqueness and Keys

Tables in the relational model are used to represent "things" in the real world. Each table should represent only one thing. These things (or entities) can be real-world objects or events. For example, a real-world object might be a customer, an inventory item, or an invoice. Examples of events include patient visits, orders, and telephone calls. Tables are made up of rows and columns.
The relational model dictates that each row in a table be unique. If you allow duplicate rows in a table, then there's no way to uniquely address a given row via programming. This creates all sorts of ambiguities and problems that are best avoided. You guarantee uniqueness for a table by designating a primary key—a column that contains unique values for a table. Each table can have only one primary key, even though several columns or combination of columns may contain unique values. All columns (or combination of columns) in a table with unique values are referred to as candidate keys, from which the primary key must be drawn. All other candidate key columns are referred to as alternate keys. Keys can be simple or composite. A simple key is a key made up of one column, whereas a composite key is made up of two or more columns.
The decision as to which candidate key is the primary one rests in your hands—there's no absolute rule as to which candidate key is best. Fabian Pascal, in his book SQL and Relational Basics, notes that the decision should be based upon the principles of minimality (choose the fewest columns necessary), stability (choose a key that seldom changes), and simplicity/familiarity (choose a key that is both simple and familiar to users). Let's illustrate with an example. Say that a company has a table of customers called tblCustomer, which looks like the table shown in Figure 1.
Figure 1
Figure 1. The best choice for primary key for tblCustomer would be CustomerId.
Candidate keys for tblCustomer might include CustomerId, (LastName + FirstName), Phone#, (Address, City, State), and (Address + ZipCode). Following Pascal's guidelines, you would rule out the last three candidates because addresses and phone numbers can change fairly frequently. The choice among CustomerId and the name composite key is less obvious and would involve tradeoffs. How likely would a customer's name change (e.g., marriages cause names to change)? Will misspelling of names be common? How likely will two customers have the same first and last names? How familiar will CustomerId be to users? There's no right answer, but most developers favor numeric primary keys because names do sometimes change and because searches and sorts of numeric columns are more efficient than of text columns in Microsoft Access (and most other databases).
Counter columns in Microsoft Access make good primary keys, especially when you're having trouble coming up with good candidate keys, and no existing arbitrary identification number is already in place. Don't use a counter column if you'll sometimes need to renumber the values—you won't be able to—or if you require an alphanumeric code—Microsoft Access supports only long integer counter values. Also, counter columns only make sense for tables on the one side of a one-to-many relationship (see the discussion of relationships in the next section).
Note: In many situations, it is best to use some sort of arbitrary static whole number (e.g., employee ID, order ID, a counter column, etc.) as a primary key rather than a descriptive text column. This avoids the problem of misspellings and name changes. Also, don't use real numbers as primary keys since they are inexact.

Relational database management systems

Relational databases, as implemented in relational database management systems, have become a predominant choice for the storage of information in new databases used for financial records, manufacturing and logistical information, personnel data and much more. Relational databases have often replaced legacy hierarchical databases and network databases because they are easier to understand and use, even though they are much less efficient. As computer power has increased, the inefficiencies of relational databases, which made them impractical in earlier times, have been outweighed by their ease of use. However, relational databases have been challenged by Object Databases, which were introduced in an attempt to address the object-relational impedance mismatch in relational database, and XML databases.
The three leading commercial relational database vendors are Oracle, Microsoft, and IBM.[2]. The three leading open source implementations are MySQL, PostgreSQL, and SQLite.

Normalization

Normalization is the process of efficiently organizing data in a database. There are two goals of the normalization process: eliminating redundant data (for example, storing the same data in more than one table) and ensuring data dependencies make sense (only storing related data in a table). Both of these are worthy goals as they reduce the amount of space a database consumes and ensure that data is logically stored.

The Normal Forms

The database community has developed a series of guidelines for ensuring that databases are normalized. These are referred to as normal forms and are numbered from one (the lowest form of normalization, referred to as first normal form or 1NF) through five (fifth normal form or 5NF). In practical applications, you'll often see 1NF, 2NF, and 3NF along with the occasional 4NF. Fifth normal form is very rarely seen and won't be discussed in this article.

Before we begin our discussion of the normal forms, it's important to point out that they are guidelines and guidelines only. Occasionally, it becomes necessary to stray from them to meet practical business requirements. However, when variations take place, it's extremely important to evaluate any possible ramifications they could have on your system and account for possible inconsistencies. That said, let's explore the normal forms.

First Normal Form (1NF)

First normal form (1NF) sets the very basic rules for an organized database:
  • Eliminate duplicative columns from the same table.
  • Create separate tables for each group of related data and identify each row with a unique column or set of columns (the primary key).

Second Normal Form (2NF)

Second normal form (2NF) further addresses the concept of removing duplicative data:
  • Meet all the requirements of the first normal form.
  • Remove subsets of data that apply to multiple rows of a table and place them in separate tables.
  • Create relationships between these new tables and their predecessors through the use of foreign keys.

Third Normal Form (3NF)

Third normal form (3NF) goes one large step further:
  • Meet all the requirements of the second normal form.
  • Remove columns that are not dependent upon the primary key.

Fourth Normal Form (4NF)

Finally, fourth normal form (4NF) has one additional requirement:
  • Meet all the requirements of the third normal form.
  • A relation is in 4NF if it has no multi-valued dependencies.
Remember, these normalization guidelines are cumulative. For a database to be in 2NF, it must first fulfill all the criteria of a 1NF database.

Relational operations

Queries made against the relational database, and the derived relvars in the database are expressed in a relational calculus or a relational algebra each. The first four operators were based on the traditional mathematical set operations:
  • The unons operator combines the tuples of two relations and removes all duplicate tuples from the result. The relational union operator is equivalent to the SQL UNION operator.
  • The intersections operator produces the set of tuples that two relations share in common. Intersection is implemented in SQL in the form of the INTERSECT operator.
  • The difference operator acts on two relations and produces the set of tuples from the first relation that do not exist in the second relation. Difference is implemented in SQL in the form of the EXCEPT or MINUS operator.
  • The Cartesian product of two relations is a join that is not restricted by any criteria, resulting in every tuple of the first relation being matched with every tuple of the second relation. The cartesian product is implemented in SQL as the CROSS JOIN join operator.
The remaining operators proposed by Codd involve special operations specific to relational databases:
  • The selection, or restriction, operation retrieves tuples from a relation, limiting the results to only those that meet a specific criteria, i.e. a subset in terms of set theory. The SQL equivalent of selection is the SELECT query statement with a WHERE clause.
  • The projection operation extracts only the specified attributes from a tuple or set of tuples.
  • The join operation defined for relational databases is often referred to as a natural join. In this type of join, two relations are connected by their common attributes. SQL's approximation of a natural join is the INNER JOIN join operator.
  • The relational division operation is a slightly more complex operation, which involves essentially using the tuples of one relation (the dividend) to partition a second relation (the divisor). The relational division operator is effectively the opposite of the cartesian product operator (hence the name).
Other operators have been introduced or proposed since Codd's introduction of the original eight including relational comparison operators and extensions that offer support for nesting and hierarchical data, among others.

Relations or Tables

A relation is defined as a set of tuples that have the same attributes. A tuple usually represents an object and information about that object. Objects are typically physical objects or concepts. A relation is usually described as a table, which is organized into rows and columns. All the data referenced by an attribute are in the same domain and conform to the same constraints.
The relational model specifies that the tuples of a relation have no specific order and that the tuples, in turn, impose no order on the attributes. Applications access data by specifying queries, which use operations such as select to identify tuples, project to identify attributes, and join to combine relations. Relations can be modified using the insert, delete, and update operators. New tuples can supply explicit values or be derived from a query. Similarly, queries identify tuples for updating or deleting. It is necessary for each tuple of a relation to be uniquely identifiable by some combination (one or more) of its attribute values. This combination is referred to as the primary key.

Renational Database

Relational Database
A database is a system intended to organize, store, and retrieve large amounts of data easily.It consists of an organized collection of data for one or more uses, typically in digital form. One way of classifying databases involves the type of their contents, for example: bibliographic, document-text, statistical. Digital databases are managed using database  management systems, which store database contents, allowing data creation and maintenance, and search and other access. Database is the collection of different data that are related to each other. so the database which are related to each other can be made in a relationship. as we relation them then hat is known as the relational database.

A relational database matches data by using common characteristics found within the data set. The resulting groups of data are organized and are much easier for many people to understand.
For example, a data set containing all the real-estate transactions in a town can be grouped by the year the transaction occurred; or it can be grouped by the sale price of the transaction; or it can be grouped by the buyer's last name; and so on.
Such a grouping uses the relational model (a technical term for this is schema). Hence, such a database is called a "relational database."
The software used to do this grouping is called a relational database management system (RDBMS). The term "relational database" often refers to this type of software.
Relational databases are currently the predominant choice in storing financial records, medical records, manufacturing and logistical information, personnel data and much more.